The Z-measures on Partitions, Pfaffian Point Processes, and the Matrix Hypergeometric Kernel

نویسنده

  • EUGENE STRAHOV
چکیده

We consider a point process on one-dimensional lattice originated from the harmonic analysis on the infinite symmetric group, and defined by the z-measures with the deformation (Jack) parameter 2. We derive an exact Pfaffian formula for the correlation function of this process. Namely, we prove that the correlation function is given as a Pfaffian with a 2×2 matrix kernel. The kernel is given in terms of the Gauss hypergeometric functions, and can be considered as a matrix analogue of the Hypergeometric kernel introduced by A. Borodin and G. Olshanski [6]. Our result holds for all values of admissible complex parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meixner Polynomials and Random Partitions

The paper deals with a 3-parameter family of probability measures on the set of partitions, called the z-measures. The z-measures first emerged in connection with the problem of harmonic analysis on the infinite symmetric group. They are a special and distinguished case of Okounkov’s Schur measures. It is known that any Schur measure determines a determinantal point process on the 1-dimensional...

متن کامل

2 A pr 1 99 9 DISTRIBUTIONS ON PARTITIONS , POINT PROCESSES , AND THE HYPERGEOMETRIC KERNEL

We study a 3–parametric family of stochastic point processes on the one–dimensional lattice originated from a remarkable family of representations of the infinite symmetric group. We prove that the correlation functions of the processes are given by determinantal formulas with a certain kernel. The kernel can be expressed through the Gauss hypergeometric function; we call it the hypergeometric ...

متن کامل

Z-measures on partitions and their scaling limits

We study certain probability measures on partitions of n = 1, 2, . . . , originated in representation theory, and demonstrate their connections with random matrix theory and multivariate hypergeometric functions. Our measures depend on three parameters including an analog of the β parameter in random matrix models. Under an appropriate limit transition as n → ∞, our measures converge to certain...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

3 O ct 1 99 8 POINT PROCESSES AND THE INFINITE SYMMETRIC GROUP . PART VI : SUMMARY OF RESULTS

We give a summary of the results from Parts I–V (math/9804086, math/9804087, math/9804088, math/9810013, math/9810014). Our work originated from harmonic analysis on the infinite symmetric group. The problem of spectral decomposition for certain representations of this group leads to a family of probability measures on an infinite–dimensional simplex, which is a kind of dual object for the infi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009