The Z-measures on Partitions, Pfaffian Point Processes, and the Matrix Hypergeometric Kernel
نویسنده
چکیده
We consider a point process on one-dimensional lattice originated from the harmonic analysis on the infinite symmetric group, and defined by the z-measures with the deformation (Jack) parameter 2. We derive an exact Pfaffian formula for the correlation function of this process. Namely, we prove that the correlation function is given as a Pfaffian with a 2×2 matrix kernel. The kernel is given in terms of the Gauss hypergeometric functions, and can be considered as a matrix analogue of the Hypergeometric kernel introduced by A. Borodin and G. Olshanski [6]. Our result holds for all values of admissible complex parameters.
منابع مشابه
Meixner Polynomials and Random Partitions
The paper deals with a 3-parameter family of probability measures on the set of partitions, called the z-measures. The z-measures first emerged in connection with the problem of harmonic analysis on the infinite symmetric group. They are a special and distinguished case of Okounkov’s Schur measures. It is known that any Schur measure determines a determinantal point process on the 1-dimensional...
متن کامل2 A pr 1 99 9 DISTRIBUTIONS ON PARTITIONS , POINT PROCESSES , AND THE HYPERGEOMETRIC KERNEL
We study a 3–parametric family of stochastic point processes on the one–dimensional lattice originated from a remarkable family of representations of the infinite symmetric group. We prove that the correlation functions of the processes are given by determinantal formulas with a certain kernel. The kernel can be expressed through the Gauss hypergeometric function; we call it the hypergeometric ...
متن کاملZ-measures on partitions and their scaling limits
We study certain probability measures on partitions of n = 1, 2, . . . , originated in representation theory, and demonstrate their connections with random matrix theory and multivariate hypergeometric functions. Our measures depend on three parameters including an analog of the β parameter in random matrix models. Under an appropriate limit transition as n → ∞, our measures converge to certain...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کامل3 O ct 1 99 8 POINT PROCESSES AND THE INFINITE SYMMETRIC GROUP . PART VI : SUMMARY OF RESULTS
We give a summary of the results from Parts I–V (math/9804086, math/9804087, math/9804088, math/9810013, math/9810014). Our work originated from harmonic analysis on the infinite symmetric group. The problem of spectral decomposition for certain representations of this group leads to a family of probability measures on an infinite–dimensional simplex, which is a kind of dual object for the infi...
متن کامل